GeneFluidics’ sensor technology enables quantification of nucleic acids and proteins in unprocessed samples on a single platform. Our patented sensor fabrication and electrochemical detection methods provide high sensitivity even in unamplified, unpurified biological samples. Results are delivered within 1 hour.

Electrochemical biosensor



Sub-femtomolar (genetic material) and sub-pg/mL (protein) sensitivities are made possible by taking advantage of high turnover enzyme cycling.


Sensors with optical grade flatness block non-specific binding of cellular debris, and thus eliminate the need of purification even for unprocessed biological samples.


A combination of immunoassays and genetic assays can be performed simultaneously on a sensor array.

Fully automated

Benchtop and portable systems are available which fully automate the assay process.


Compatible with most ELISA reagents while providing superior performance.



Assay Compatibility

GeneFluidics’ detection technology is compatible with most ELISA and hybridization-based genetic assay reagents. Select the sensor surface functionalization to match your current reagents. This is mainly determined by the available conjugation options to immobilize capture molecules onto sensors surface.

Common Assay Parameters to Optimize

  • Capture and detection probe (coating and secondary antibody) concentrations
  • Different conjugations for optimal orientation
  • Incubation times
  • Different blocking agents for different sample types (urine, saliva, blood, culture media)
  • Buffer compatiblity among reagents
  • Wash buffers and washing conditions

Feasibility Study Service Available

An feasibility study is an assay compatibility service which evaluates your assay’s compatibility with the GeneFluidics platform.


“AC Electrokinetics of Physiological Fluids for Biomedical Applications”

Y. Lu, T. Liu, A. C. Lamanda, M. L. Y. Sin, V. Gau, J. C. Liao, and P. K. Wong,  Journal of Laboratory Automation 20, 611-620, 2015. Link

“Rapid antimicrobial susceptibility testing with electrokinetics enhanced biosensors for diagnosis of acute bacterial infections”

T. Liu, Y Lu, V. Gau, J. C. Liao, and P. K. Wong, Annals of Biomedical Engineering 42, 2314-2321, 2014. Link

“Electrokinetic Stringency Control in Self-Assembled Monolayer-based Biosensors for Multiplex Urinary Tract Infection Diagnosis”

T. Liu, M. L. Y. Sin, J. D. Pyne, V. Gau, J. C. Liao, and P. K. Wong,  Nanomedicine: Nanotechnology, Biology, and Medicine 10, 159-166, 2014. Link

“A Universal Electrode Approach for Automated Electrochemical Molecular Analyses”,

M. L. Y. Sin, V. Gau, J. C. Liao, and P. K. Wong, IEEE/ASME Journal of Microelectromechanical Systems 22, 1126-1132, 2013. Link

“AC Electrokinetics Facilitated Biosensor Cassette for Rapid Pathogen Identification”

M. Ouyang, R. Mohan, Y. Lu, T. Liu, K. E. Mach, M. L. Y. Sin, M. McComb, J. Joshi, V. Gau, P. K. Wong, J. C. Liao, Analyst 138, 3660-3666, 2013. Link

“Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading”

Y. Lu, J. Gao, D. D. Zhang, V. Gau, J. C. Liao, and P. K. Wong, Analytical Chemistry 85, 3971-3976, 2013. Link

“A Universal Electrode Approach for Molecular Diagnostics”

M. L. Y. Sin, V. Gau, J. C. Liao, and P. K. Wong, IEEE Nanotechnology Magazine 7, 31-37, 2013.

“In situ electrokinetic enhancement for self-assembled monolayer based electrochemical biosensing”

M. L. Y. Sin, T. Liu, J. D. Pyne, V. Gau, J. C. Liao, and P. K. Wong,  Analytical Chemistry 84, 2702-2707, 2012. Link

” Hybrid Electrokinetic Manipulation in High-Conductivity Media”,

J. Gao, M. L. Y. Sin, T. Liu, V. Gau, J. C. Liao, and P. K. Wong,  Lab on a Chip 11, 1770-1775, 2011.  Link

“A Versatile Biosensor Platform for Rapid Antimicrobial Susceptibility Testing Directly from Clinical Samples”

K. E. Mach, R. Mohan, E. J. Baron, M.-C. Shih, V. Gau, P. K. Wong, and J. C. Liao, Journal of Urology 185, 148-153. 2011.

“Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions”

C. H. Chen, V. Gau, D. D. Zhang, J. C. Liao, Fei-Yue Wang, and P. K. Wong, PLoS ONE 5, e15472, 2010.

“Antimicrobial Susceptibility Testing Using High Surface-to-Volume Ratio Microchannels”

Chia Hsiang Chen, Yi Lu, Mandy L. Y. Sin, Kathleen E. Mach, Donna D. Zhang, Vincent Gau, Joseph C. Liao, and Pak Kin Wong,  Analytical Chemistry 8, 1012-1019, 2010.  Link

“Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications”

M. L. Y. Sin, V. Gau, J. C. Liao, and P. K. Wong, Journal of Association for Laboratory Automation 15, 426-432, 2010.

“Electrochemical Immunosensor Detection of Urinary Lactoferrin in Clinical Samples for Urinary Tract Infection Diagnosis”

Y. Pan, G. A. Sonn, M. L. Y. Sin, K. E. Mach, M.-C. Shih, V. Gau, P. K. Wong, and J. C. Liao, Biosensors and Bioelectronics 26, 649-654, 2010.

“Matrix Effects – A Challenge Toward Automation of Molecular Analysis”

May L. Chiu, Walson Lawi, Steven T. Snyder, Pak Kin Wong, Joseph Liao, and Vincent Gau, Journal of the Association for Laboratory Automation 15, 233-242, 2010.

“Active Manipulation of Quantum Dots Using AC Electrokinetics”

Mandy L. Y. Sin, Vincent Gau, Joseph C. Liao, David A. Haake, and Pak Kin Wong, Journal of Physical Chemistry C 113, 6561-6565, 2009.

“A Microfluidic Cartridge System for Multiplexed Clinical Analysis”

Walson Lawi, Chris Wiita, Steven T. Snyder, Fang Wei, avid Wong, Pak Kin Wong, Joseph C. Liao, David Haake, Vincent Gau, Journal of the Association for Laboratory Automation 14, 407-412, 2009.

“Electrochemical molecular analysis without nucleic acid amplification”

Vincent Gau, Shu-Ching Ma, Hua Wang, Joni Tsukuda, John Kibler, and David A. Haake, Methods 37, 73-83, 2005.

“Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens.”

J. C. Liao, M. Mastali, V. Gau, M. A. Suchard, A. K. Møller, D. A. Bruckner, J. T. Babbitt, Y. Li , J. Gornbein, E. M. Landaw, E. R. McCabe, B. M. Churchill, D. A. Haake,  J Clin Microbiol 44: 2: 561-70, 2006.

“A point-of-care micro-laboratory for direct pathogen identification in body fluids”

J. C. Liao, Y. Ma, Y. Li, V. Gau, M. Mastali, C-P Sun, E. R. B. McCabe, E. M. Landaw, D.A. Haake, B. M. Churchill, C.-M. Ho,  IEEE NTC Review on Advances of Micro, Nano, and Molecular Systems, 1109-1112, 2006.

“Rapid, species-specific detection of uropathogen 16S rDNA and rRNA at ambient temperature by dot-blot hybridization and an electrochemical sensor array.”

C. P. Sun, J. C. Liao, Y. H. Zhang, V. Gau, M. Mastali, J. T. Babbitt, W. S. Grundfest, B. M. Churchill, E. R. McCabe, D. A. Haake,  Mol Genet Metab 84, 90-9, 2005.

“Oral Fluid Nanosensor Test (OFNASET) with advanced electrochemical-based molecular analysis platform.”

V. Gau, D. Wong,  Ann NY Acad Sci 1098, 401-410, 2007.

“Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe”

W. Fang, J. Wang, W. Liao, B. G. Zimmermann, D. Wong, C.-H. Ho,  Nucleic Acids Res. 36, e65, 2008.



Assay Kits

Order assay kits from:

BioCheck Inc.

Note: When used with GeneFluidics products, the following assays are for Research Use Only – Not for use in diagnostic procedures.

Cardiac Markers
  • Troponin I
  • Myoglobin
  • hs C-reactive protein
  • CK-MB
  • Myeloperoxidase (MPO)
  • hCG
  • FSH
  • LH
  • Prolactin
  • Visual hCG
  • Estradiol
  • Progesterone
  • Testosterone
  • TSH
  • U-TSH
  • T3
  • Free T3
  • T4
  • Free T4
Tumor Markers
  • Beta-2 Microglobulin
  • AFP (0-300 ng/mL)
  • AFP (0-1000 ng/mL)
  • CEA
  • CA 125
  • CA 15-3
  • CA 19-9
  • PSA
  • Free PSA
  • Free beta-hCG
  • Human Ferritin
  • HGH
  • IgE
TORCH and Infectious Diseases
  • H. pylori IgG (Qualitative)
  • H. pylori IgG (Quantitative)
  • H. pylori IgM (Qualitative)
  • Rubella IgG
  • Rubella IgM
  • Toxoplasma IgG
  • Toxoplasma IgM
  • CMV IgG
  • CMV IgM
  • HSV-1 IgC
  • HSV-1 IgM
  • HSV-2 IgG
  • HSV-2 IgM